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1 Principal Ideal Domains, Maximal Ideals, and Prime Ide-
als

1.1 Group extensions

Definition 1.1. A (short) exact sequence of groups is a sequence

1 N E G 1ι π

where ι is injective, π is surjective, and im(ι) = ker(π).

Definition 1.2. A group extension of G by N is a group E, where

1 N E G 1ι π

is exact. If E = N oϕ G, we call it a split extension.

1.2 Simple rings and ideals

Proposition 1.1. A ring is a division ring iff it has no nonzero proper left ideals.

Proof. ( =⇒ ): Let I 6= 0 be a left ideal of R¿ If r ∈ I \ {0}, then r ∈ R×, so 1 ∈ I. So
I = R.

( ⇐= ): Let r ∈ R \ {0}. Rr = R, so there exists some u ∈ R such that ur = 1.
Ru = R, so there exists some s ∈ R such that su = 1. Then s = sur = r. Then r has a
left and a right inverse, so r ∈ R×.

Definition 1.3. A ring with no nonzero proper (two-sided) ideals is called simple.

Example 1.1. Let D be a division ring, and let Mn(D) be the ring of n×n matrices with
entries in D. Let ei,j be the matrix with 0 in every entry but (i, j) and a 1 in the (i, j)
coordinate. Then Mn(D)ei,j is the set of matrices which are 0 outside of the j-th column.
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Similarly, ei,jMn(D) is the set of matrices which are 0 outside of the i-th row. So the two
sided ideal (ei,j) = Mn(D).

To show that Mn(D) is simple, let A ∈ Mn(D) \ {0}, and suppose that ai,j 6= 0 for
some i, j. Then ei,iAej,j = ai,jei,j . Since ai,j 6= 0, ai,j ∈ D×,which means that ei,j ∈ (A).
So (A) = Mn(D).

Let I, J be ideals in a ring. Then IJ is the span of ab, with a ∈ I and b ∈ J . In general,
IJ ⊆ I ∩ J .

Let (Iα) be a system of ideals, totally ordered under containment. Then
⋃
α Iα is an

ideal (this is also true for left or right ideals).

Theorem 1.1 (Chinese remainder theorem). Let I1, . . . , Ik be “pairwise coprime,” i.e.
Ij + Ii = R for j 6= i. Then

R/

k⋂
i=1

∼=
k∏
i=1

R/Ii.

Proof. The proof is basically the same as the proof that Z/nZ ∼= Z.m1Z × · · · × Z/mkZ,
where n = m1 · · ·mk and the mi are coprime.

1.3 Principal ideal domains

Definition 1.4. A (left) zero divisor r ∈ R \ {0} is an element such that there exists
some s ∈ R \ {0} with rs = 0. A zero divisor is a left and right zero divisor.

Definition 1.5. A domain is a commutative ring without zero divisors.

Definition 1.6. A principal ideal domain (PID) is a domain in which every ideal is
principal (generated by 1 element).

Example 1.2. Z is a PID.

Example 1.3. If F is a field, then F [x] is a PID. How do we divide polynomials? There
is a map deg : F [x] → Z≥0 ∪ {−∞} such that deg(f) ≥ 0 if f 6= 0 and deg(f) = 0 iff f
is constant and nonzero. If f, g ∈ F [x] with g 6= 0, then = qg + r, where q, r ∈ F [x] and
deg(r) < deg(f).

Proposition 1.2. If F is a field, then F [x] is a PID.

Proof. Let I be a nonzero ideal. Choose g inI \ {0} for minimal degree. If f ∈ I, write
f = qg + r with r ∈ I and deg(r) < deg(g). Then r = 0, so f ∈ (g). Hence, I = (g).

Definition 1.7. An element π of a commutative ring R is irreducible if whenever π = ab
with a, b ∈ R, either a ∈ R× or b ∈ R×.
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Definition 1.8. Two elements a, b ∈ R are associate if there exists u ∈ R× such that
a = ub.

Example 1.4. The irreducible elements in Z are ± primes.

Example 1.5. The irreducible elements in F [x] are the (nonconstant) irreducible polyno-
mials.

If f ∈ F [x], we get a function f : F → F . But this does not necessarily go both ways.
Let f = xp − x = x(xp−1 − 1), where F = Fp = Z/pZ. Then f(α) = 0 for all α ∈ Fp, but
f 6= 0 since deg(f) = p.

1.4 Maximal and prime ideals

Definition 1.9. An ideal of a ring is maximal if it is proper and not properly contained
in any proper ideal.

Definition 1.10. An ideal p of a commutative ring is prime if it is proper, and whenever
ab ∈ p for a, b ∈ R, then a ∈ p or b ∈ p.

Proposition 1.3. Principal prime ideals in a domain are generated by irreducible elements.

Proof. If p = (π) is prime and ab = π ∈ (p), then either a ∈ p or b ∈ p. So a = sπ or b = tπ.
Without loss of generality, a = sπ. So (bs− 1)π = 0, which means that b = s−1 ∈ R×.

Example 1.6. In Z and F [x], nonzero prime and maximal ideals are the same. However,
in F [x, y], the ideal (x) is prime but not maximal. The ideal (x, y) is prime and maximal.
In the ring Z[x], (p, x) is maximal if p is prime. But (p) and (x) are prime but no maximal.

Lemma 1.1. An element m ( R is maximal iff R/m is a division ring. If R is commu-
tative, then p ( R is prime iff R/p is an integral domain.

Proof. The key is that ideals in R/I are in correspondence with ideals of R containing I.
When I = m, if R/m is a division ring, then the ideals in R/m are 0, R/m. Then the only
ideals in R containing m are m and R.

If p is prime, then ab ∈ p implies that a ∈ p or b ∈ p. So a+ p = p or b+ p = p. This is
equivalent to ab = (a+p)(b+p) = p. If R/p is an integral domain, then ab ∈ p ⇐⇒ ab = 0,
so a = 0 or b = 0. This is equivalent to a ∈ p or b ∈ p.

Lemma 1.2 (Zorn’s lemma). Let X be a partially ordered set. Suppose that every chain
(totally ordered subset) in X has an upper bound (an upper bound x ∈ X of a set S ⊆ X is
such that s ≤ x for all s ∈ S. Then X has a maximal element (x ∈ X such that if y ∈ X
and x ≤ y, then y = x).

This is equivalent to the axiom of choice.
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Theorem 1.2. Every ring has a maximal ideal.

Proof. Let X be the set of proper ideals in R. If C ⊆ X is a chain, then
⋃
N∈C N is an

upper bound for C. So X has a maximal element which is a maximal ideal.
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