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1 Principal Ideal Domains, Maximal Ideals, and Prime Ide-
als

1.1 Group extensions

Definition 1.1. A (short) exact sequence of groups is a sequence

1 N——F "> G 1

where ¢ is injective, 7 is surjective, and im(¢) = ker ().
Definition 1.2. A group extension of G by N is a group E, where

l1— N—>F—"5G——1

is exact. If E = N x, G, we call it a split extension.

1.2 Simple rings and ideals

Proposition 1.1. A ring is a division ring iff it has no nonzero proper left ideals.

Proof. (= ): Let I # 0 be a left ideal of Ry If r € I\ {0}, then r € R*,s0 1 € I. So
I=R.

(<= ): Let r € R\ {0}. Rr = R, so there exists some u € R such that ur = 1.
Ru = R, so there exists some s € R such that su = 1. Then s = sur = r. Then r has a
left and a right inverse, so r € R*. O

Definition 1.3. A ring with no nonzero proper (two-sided) ideals is called simple.

Example 1.1. Let D be a division ring, and let M, (D) be the ring of n x n matrices with
entries in D. Let e;; be the matrix with 0 in every entry but (4,j) and a 1 in the (3, j)
coordinate. Then M,,(D)e; ; is the set of matrices which are 0 outside of the j-th column.



Similarly, e; ; M, (D) is the set of matrices which are 0 outside of the i-th row. So the two
sided ideal (e; ;) = My(D).

To show that M, (D) is simple, let A € M, (D) \ {0}, and suppose that a;; # 0 for
some %,j. Then e;;Ae;; = a;je; ;. Since a;; # 0, a; ; € D*,which means that e; ; € (A).
So (A) = M,(D).

Let I, J be ideals in a ring. Then IJ is the span of ab, with a € I and b € J. In general,
1JCIndJ.

Let (Io) be a system of ideals, totally ordered under containment. Then J, I, is an
ideal (this is also true for left or right ideals).

Theorem 1.1 (Chinese remainder theorem). Let Iy,...,I; be “pairwise coprime,” i.e.
Ij+I; = R for j #1i. Then

k k
R/ = ][R/
=1 =1

Proof. The proof is basically the same as the proof that Z/nZ = Z.miZ x --- X Z/myZ,
where n = my - - - my, and the m; are coprime. O

1.3 Principal ideal domains

Definition 1.4. A (left) zero divisor r € R\ {0} is an element such that there exists
some s € R\ {0} with rs = 0. A zero divisor is a left and right zero divisor.

Definition 1.5. A domain is a commutative ring without zero divisors.

Definition 1.6. A principal ideal domain (PID) is a domain in which every ideal is
principal (generated by 1 element).

Example 1.2. Z is a PID.

Example 1.3. If F is a field, then F[z] is a PID. How do we divide polynomials? There
is a map deg : Flx] — Z>o U {—o0} such that deg(f) > 0 if f # 0 and deg(f) = 0 iff f
is constant and nonzero. If f, g € F[x] with g # 0, then = qg + r, where ¢,r € F[x] and
deg(r) < deg(f).

Proposition 1.2. If F' is a field, then F[z] is a PID.

Proof. Let I be a nonzero ideal. Choose g inl \ {0} for minimal degree. If f € I, write
f=qg+r with r € I and deg(r) < deg(g). Then r =0, so f € (g). Hence, I = (g). O

Definition 1.7. An element 7 of a commutative ring R is irreducible if whenever 7 = ab
with a,b € R, either a € R* or b € R*.



Definition 1.8. Two elements a,b € R are associate if there exists u € R* such that
a = ub.

Example 1.4. The irreducible elements in Z are + primes.

Example 1.5. The irreducible elements in F[z] are the (nonconstant) irreducible polyno-
mials.

If f € Flz], we get a function f: F — F. But this does not necessarily go both ways.
Let f = aP —z = z(2P~! — 1), where F = F, = Z/pZ. Then f(a) =0 for all a € F,, but
f # 0 since deg(f) = p.

1.4 Maximal and prime ideals

Definition 1.9. An ideal of a ring is maximal if it is proper and not properly contained
in any proper ideal.

Definition 1.10. An ideal p of a commutative ring is prime if it is proper, and whenever
ab € p for a,b € R, then a € p or b € p.

Proposition 1.3. Principal prime ideals in a domain are generated by irreducible elements.

Proof. If p = () is prime and ab = 7 € (p), then either a € por b € p. Soa = swor b = tm.
Without loss of generality, a = sm. So (bs — 1) = 0, which means that b = s™1 € R*. O

Example 1.6. In Z and F[z], nonzero prime and maximal ideals are the same. However,
in F[z,y|, the ideal (z) is prime but not maximal. The ideal (z,y) is prime and maximal.
In the ring Z[z], (p, z) is maximal if p is prime. But (p) and (x) are prime but no maximal.

Lemma 1.1. An element m C R is mazimal iff R/m is a division ring. If R is commu-
tative, then p C R is prime iff R/p is an integral domain.

Proof. The key is that ideals in R/I are in correspondence with ideals of R containing I.
When I =m, if R/m is a division ring, then the ideals in R/m are 0, R/m. Then the only
ideals in R containing m are m and R.

If p is prime, then ab € p implies that a e por b € p. Soa+p=por b+p=p. This is
equivalent to @b = (a+p)(b+p) = p. If R/p is an integral domain, then ab € p <= @b = 0,
so @ =0 or b=0. This is equivalent to a € p or b € p. O

Lemma 1.2 (Zorn’s lemma). Let X be a partially ordered set. Suppose that every chain
(totally ordered subset) in X has an upper bound (an upper bound x € X of a set S C X is
such that s < x for all s € S. Then X has a mazimal element (x € X such that if y € X
and x < vy, then y = x).

This is equivalent to the axiom of choice.



Theorem 1.2. Fvery ring has a mazimal ideal.

Proof. Let X be the set of proper ideals in R. If C' C X is a chain, then |Jyco N is an
upper bound for C. So X has a maximal element which is a maximal ideal. O
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